

Cambridge International AS & A Level

CANDIDATE
NAME

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

* 2 1 0 8 9 6 9 3 5 8 *

MATHEMATICS

9709/13

Paper 1 Pure Mathematics 1

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **16** pages. Any blank pages are indicated.

BLANK PAGE

1 A curve is such that its gradient at a point (x, y) is given by $\frac{dy}{dx} = x - 3x^{-\frac{1}{2}}$. It is given that the curve passes through the point $(4, 1)$.

Find the equation of the curve.

[4]

2 The circle with equation $(x - 3)^2 + (y - 5)^2 = 40$ intersects the y -axis at points A and B .

(a) Find the y -coordinates of A and B , expressing your answers in terms of surds. [2]

(b) Find the equation of the circle which has AB as its diameter. [2]

3 (a) Show that the equation

$$5 \cos \theta - \sin \theta \tan \theta + 1 = 0$$

may be expressed in the form $a \cos^2 \theta + b \cos \theta + c = 0$, where a , b and c are constants to be found. [3]

(b) Hence solve the equation $5 \cos \theta - \sin \theta \tan \theta + 1 = 0$ for $0 < \theta < 2\pi$.

[4]

4 (a) Expand the following in ascending powers of x up to and including the term in x^2 .

$$(i) (1 + 2x)^5.$$

[1]

.....
.....
.....
.....

(ii) $(1 - ax)^6$, where a is a constant.

[2]

In the expansion of $(1 + 2x)^5(1 - ax)^6$, the coefficient of x^2 is -5 .

(b) Find the possible values of a .

[4]

5 The first, second and third terms of a geometric progression are $2p + 6$, $5p$ and $8p + 2$ respectively.

(a) Find the possible values of the constant p . [3]

(b) One of the values of p found in (a) is a negative fraction.

Use this value of p to find the sum to infinity of this progression.

[4]

6 A line has equation $y = 6x - c$ and a curve has equation $y = cx^2 + 2x - 3$, where c is a constant. The line is a tangent to the curve at point P .

Find the possible values of c and the corresponding coordinates of P .

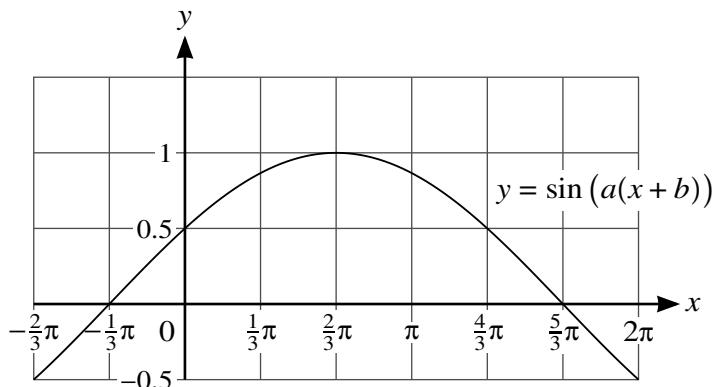
[7]

7 The function f is defined by $f(x) = 1 + \frac{3}{x-2}$ for $x > 2$.

(a) State the range of f .

[1]

.....
.....
.....


(b) Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} .

[4]

The function g is defined by $g(x) = 2x - 2$ for $x > 0$.

(c) Obtain a simplified expression for $gf(x)$.

[2]

The diagram shows part of the graph of $y = \sin(a(x + b))$, where a and b are positive constants.

(a) State the value of a and one possible value of b .

[2]

.....

Another curve, with equation $y = f(x)$, has a single stationary point at the point (p, q) , where p and q are constants. This curve is transformed to a curve with equation

$$y = -3f\left(\frac{1}{4}(x + 8)\right).$$

(b) For the transformed curve, find the coordinates of the stationary point, giving your answer in terms of p and q .

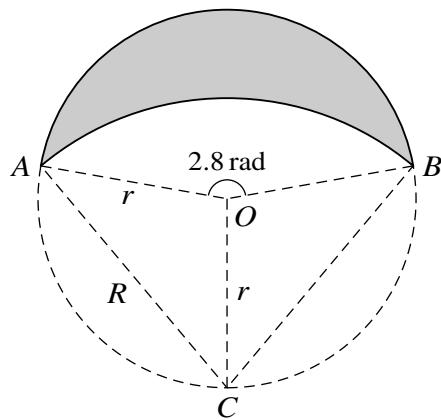
[3]

.....

9 A curve has equation $y = 2x^{\frac{1}{2}} - 1$.

(a) Find the equation of the normal to the curve at the point $A (4, 3)$, giving your answer in the form $y = mx + c$. [3]

A point is moving along the curve $y = 2x^{\frac{1}{2}} - 1$ in such a way that at A the rate of increase of the x -coordinate is 3 cm s^{-1} .


(b) Find the rate of increase of the y -coordinate at A . [2]

.....
.....
.....

At A the moving point suddenly changes direction and speed, and moves down the normal in such a way that the rate of decrease of the y-coordinate is constant at 5 cm s^{-1} .

(c) As the point moves down the normal, find the rate of change of its x -coordinate. [3]

10

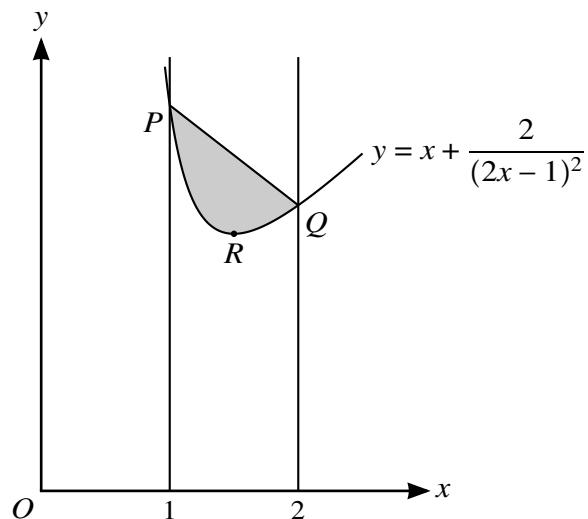
The diagram shows points A , B and C lying on a circle with centre O and radius r . Angle AOB is 2.8 radians. The shaded region is bounded by two arcs. The upper arc is part of the circle with centre O and radius r . The lower arc is part of a circle with centre C and radius R .

(a) State the size of angle ACO in radians.

[1]

.....
.....
.....
.....
.....
.....
.....

(b) Find R in terms of r .


[1]

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

(c) Find the area of the shaded region in terms of r .

[7]

11

The diagram shows part of the curve with equation $y = x + \frac{2}{(2x-1)^2}$. The lines $x = 1$ and $x = 2$ intersect the curve at P and Q respectively and R is the stationary point on the curve.

(a) Verify that the x -coordinate of R is $\frac{3}{2}$ and find the y -coordinate of R . [4]

(b) Find the exact value of the area of the shaded region.

[6]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.